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Norwegian University of
Science and Technology

rB- WaterSmart

Training Event LL Bodg/ Norway

Topic: Water distribution system modelling, optimization, and leak detection

As Part of our B-Watersmart (https://b-watersmart.eu/) training events we invite the
Norwegian Partners as well as other interested Norwegian municipalities, utilities,
consultants, researchers, and students to an online event with multiple presentations.

The event will take place on the 10" of February. Please subscribe using the following

link before the 7t of February: https://form.jotform.com/230243281165347

Program:
09:00-09:10: Short Introduction of the project
09:10-09:40: Presentation Karel van Laarhoven (KWR):
Optimization for water distribution systems
09:40-09:50 Questions
09:50-10:00 Presentation Prasanna Mohan Doss (NTNU):
Variable Autoencoders for Leak detection
10:00-10:05 Questions
10:05-10:15 Presentation Erik Nordahl (Multiconsult/NTNU):
Dual model for leak localization
10:15-10:20 Questions
10:20-10:30 Presentation Bulat Kerimov (NTNU):
Graph Neural Networks for Water distribution system
modelling
10:30-10:35 Questions
10:35-10:45 Presentation Shamsuddin Daulat (NTNU):
Evaluating the generalizability and transferability of
water distribution deterioration models
10:45-10:50: Questions
10:50-11:00: Discussion



https://b-watersmart.eu/
https://form.jotform.com/230243281165347

G-WaterSmart

Accelerating Water Smartness
In Coastal Europe and beyond

Horizon 2020 project
Call: H2020-SC5-2018-2019-2020

Greening the economy in line with the
Sustainable Development Goals (SDGS)

Contact:

b-watersmart.eu



mailto:franz.tscheikner-gratl@ntnu.no

B-WaterSmart accelerates the
transformation to water-smart economies
and societies in coastal Europe and beyond

The project is:
« Grounded on 6 coastal European cities and regions

as 6 interconnected Living Labs (LLS)

« Supported by Communities of Practice (CoPs) and
a European Innovation Alliance (INALL)

* Promoted by the Aqua Research Collaboration ARC —
A Network of European Water Research Institutes

N-
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B-WaterSmart LIVING LABS

Challenges

Water scarcity, limitations to water
reuse due to high salinity/nitrates,
limitations to water reuse due to low
acceptance.

Innovation & Demonstration

Improve water-smartness in the
municipality of Alicante by incremen-
ting water reuse and boosting circular
economy opportunities.

I

Challenges

Growing population and economy
depend on distant freshwater resour-
ces with increasing climate challen-
ges (e.g. droughts and floods). This
demand must be balanced with the
need to increase urban green areas to
ensure the quality of life of citizens
and the sustainability of urban life.

Innovation & Demonstration
Development of tools & processes to
facilitate safe water reuse, improv-
ment of water-energy-phosphorous
efficiency in municipal non-potable
water uses, improvement of house-
holds and buildings’ climate readiness
regarding water and energy with an
assessment/certification tool develo-
ped locally but with an ambition for
national/European adoption.

I

Challenges

Growing resident population and
economy, increased pollution,
untapped efficiency potential.

Innovation & Demonstration

Zero emission urban development,
improved management of the wastewa-
ter stream, improved air quality.

- TS

Challenges

Need for reuse and recovery schemes
for wastewater & sludge, limitations
to reuse and recovery due to low
acceptance, water scarcity, untapped
efficiency potential (water and resour-
ces valorisation).

Innovation & Demonstration

Enable and complete the water reuse
(industrial, agricultural and urban)
goal of a regional/national plan for
lagoon protection, apply nutrient
recovery technologies to waste water
treatment plants (WWTPs) and develop
shared evaluation model-tools for the
sustainability of WWTP effluents and
sludge valorisation.

)

Challenges

Increasing water demand in supply
area by growing sectors (households,
industry, agriculture], limited ground-
water resources, locally untapped
water reuse potential.

Innovation & Demonstration
Increasing the carrying capacity of
water supply: Identification of alterna-
tive resources, intelligent protection
strategies for groundwater bodies and
improved treatment of process water
for reuse in milk production.

‘ B -WaterSmart

(4) Flanders |

Challenges

High drinking water demand due to
dense population, high water demand
for agriculture, groundwater overex-
ploitation, water quality deterioration,
water scarcity due to droughts,
climate change and urbanisation.

Innovation & Demonstration
Development of regional concept for
improvingand monitoring water-smart-
ness and a more robust water system,
with a focus on safe water reuse.



B-WaterSmart LIVING LABS ‘5Water$mart
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Challenges

Growing resident population and
economy, increased pollution,
untapped efficiency potential.

Innovation & Demonstration

Zero emission urban development,
iImproved management of the wastewa-
ter stream, improved air quality.




Water-smart

applications & data

Circular economy
@' 'e & business models

Technologies &
software concepts

p

4

From local challenges,
opportunities and ambitions
in our Living Labs, via...

Society, governance
& policy

B-WaterSmart
METHODOLOGY

(B =WaterSmart

Water smartness
assessment framework

i

.. to water-smart societies
and economies in Coastal
Europe and beyond.




B-WaterSmart MAIN RESULTS

Society, governance Local Communities Water-smartness
and policy concepts of Practice in six assessment
Living Labs framework

Water-Smartness Knowledge

@ w g

Circular Economy

\e/

Water-smart ~ Water-smart Circular economy Fiware-based Knowledge Public
technologies applications value chains and interoperability  portal materials
and concepts  and data business models approach

(B =WaterSmart




Research goals in B-Watersmart for Living Lab Bodg

Concepts for water-smartness & their technological indicators
— Leakage detection and localization in Water Distribution Networks (WDNS)
— Infiltration in Wastewater Collection System

— Smarter stormwater management
— Potential for biogass production from small decentralized wastewater treatment plants

Partners:
Living Lab: Bode Kommune
Industry Partners:
1. Nordkontakt — Data collection and Analysis (IT & Communication)
2. TECHNI - Leakage & infiltration detection sensors (10T — LPWAN / nb-10T)
Research Partner: NTNU and SINTEF

G =WaterSmart



Research goals in B-Watersmart for Living Lab Bodg

Concepts for water-smartness & their technological indicators

— Leakage detection and localization in Water Distribution Networks (\WWDNSs)

CB =WaterSmart



Technologies

Energy
Harvesting
Management
Board

(B =WaterSmart




Technologies

Dashboard for Bodg Living Lab in B-WaterSmart

1. Designaframework for visualizing different themes.(dashboard/GUI)

2. Develop the framework.

%

Y

open data, etc.)

Tools

- |

Torsdsq 13. 09,2020 £3

Test our plattform at:
© bttps://www.miljodashboard.no/

nord‘kontakt

G =WaterSmart
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The design work with principles has now been completed, and a solution has been established.
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Technologies

Tools

Algorithms

G =WaterSmart

Presentation Karel van Laarhoven (KWR):

Optimization for water distribution systems
Questions

Presentation Prasanna Mohan Doss (NTNU):

Variable Autoencoders for Leak detection
Questions

Presentation Erik Nordahl (Multiconsult/NTNU):

Dual model for leak localization
Questions

Presentation Bulat Kerimov (NTNU):

Graph Neural Networks for Water distribution system
modelling

Questions
Presentation Shamsuddin Daulat (NTNU):

Evaluating the generalizability and transferability of
water distribution deterioration models

Questions




B-WaterSmart

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 869171. The publication reflects only the authors’ views and the
European Union is not liable for any use that may be made of the information contained therein.
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Optimization for
drinking water networks

. e # Karel van Laarhoven, KWR

\w R Bridging Science to Practice
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The Water Infrastructure Team
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chemical

Water Quality microbiological

sediment

[ i i
Mirjam Blokker water demand

Future-proof

! smart networks
Network Design

Poss ‘ 3

Joost van Summeren Amitosh Dash

design philosophy

network condition

Asset operation and
Management maintanance

Quan Pan Djorde Mitrovic Aulia Galama Mohamad Zeidan

multi-utility
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Network Optimization



~ XWR
Numerical optimization

Family of mathematical tricks to efficiently explore and compare a multitude of

possible solutions

Key mathematical ingredients:

* description of solutions (design variables)

* judging of solution quality (objectives & constraints)
* proposal of (new) solutions (variator)
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Numerical optimization
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KWR
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Numerical optimization
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Numerical optimization

!
.
| th .
PO, 00 n™ generation
: O
O
g1 o0 ©
0 O
Kol 00
=3 O
= O
0 O
= | °FP oo
< o
-
= 00 O s
| © o
S ° 0o
o 00 O
O O
| 00" 4
|
: O

Solution cost



N

Numerical optimization

10

Remaining problems
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Solution cost

Pareto front:

Playing room to trade
between different goals

KWR
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Optimization at drinking water utilities — Why?

(given that we have been tackling any number of complex design question by hand just fine, so far)

Forced to approach the goal mathematically
- Enhances insight in questions/goals
- Makes choices more objective i -

7 |
- Makes intuition more reproducable/transparant ¢~ Hopefully capture some kr'wowledge |
» of the older generation !

Optimization = robust automation :
- Room to explore and adjust ‘with a push of the button’
- This supports ideation and re-evaluating rules of thumb S

- Once develloped, the approach is extremely re-usable (/ Hopefully supports the soon t_o be :
\ overloaded younger generation |

(Optimization = ‘optimal’) !

11



— MASTER PLANS PRIORITIZATION
Optimization at drinking
water utilities — approach

Gondwana g"‘ |

Swiss army knife software tool to help with: /\(
* formulating,

. 7 d
e analysing, G 1 — 1 N/
« solving \%ﬁ 4// T__/
a multitude of different, complex network
design questions. SENSOR PLACEMENT VALVE SECTION DESIGN
CALIBRATION
Main strength: a design focussed on
maximum flexibility in problem formulation FLUSHING PLANS

2 CALAMITY RESPONSE
Inside: Epanet, hybrid evolutionairy algorithms .

and accumulating research scripts.

Condwana®

o g




Gondwana

Network I Scenarios I Datasets | Decision variables | Objectives | Constraints Optimizationl Runl Resultsl lnfoI NetWO rk & Selections

Load problem file Network:

| Network info:

Clear problem

number of nodes: 4798
number of vertices: 5191
Load netvork file number of links: 5191

2 number of pumps: 0
number of valves: 0
number of tanks: 0

Save network file

Title: Units: CMH
coordinates ranges:

x: 41989.4 - 49245.8

y: 169720.2 - 177360.6

Description:
Selection info:
O Reservoirs
[0 © Nodes
[ | Links_ P
Run options:

pressure-driven demand []

pressure-driven nodes: ] v l
with critical pressure: l

Optimization problem type:

Expert mode v |

Development options:

Output GUI elements

Dissociate network

Construct network

. Clear selection | Label: [1inks p Filter Invert selection| From selection| Store selection Load xlsx Save xlsx Delete selection(s
ik bt Clear selection| | [uinks_ (=)




| Gondwana

Network | Scenarios Datasets | Decision variables | Objectives | Constraints Dptimizationl Runl Results | Infol General data Sets

Shape definitions: List definitions:

List name:

Diameters

Labels/Values Values | C ‘ D ‘
0.0001 0.1
99.4 0.05
144.6
209.2
260.4
3116

=N @3 bW N




Gondwana

Network | Scenarios | Datasets Decision variables | Objectives | Constraints | Optimization | Run | Results | Info |

Design variables
“what can be changed?”

Decision Variables:
[Addvanable(set:lll Add change variable (set]l Delete selectedl
O Dpecwvar.0 Ipammetervalues b | IPIPES - | IDiameter hd | to IDiameters - | apply to  |Links_S_T

also change |Fu::ughne55 vl to |column




Gondwana

Network | Scenarios | Datasets Decision variables | Objectives | Constraints | Optimization | Run | Results | Info |

Design variables
“what can be changed?”

Decision Variables:
[Addvanable(set]ll Add change variable (set]l Delete selectedl
O Dpecwvar.0 Ipammetervalues b | IPIPES - | IDiameter hd | to IDiameters - | apply to  |Links_S_T

also change |Rnughne55 vl to |column

s flexible as possible, e.g.:

“Change any parameter (diameter, status, ...) of selected pipes, chosen from list”

»  “Divide selected junctions into a number of clusters (DMA’s)”

»  “Assign a ‘sensor-status’ to a number of junctions in the network”




Gondwana

Networkl Scenarios | Datasets | Decision variables Objectives | Constraints Dptimizationl Runl Results | Infol

(multiple) objectives

“when are we happy?”

(®) Single objective or implicit multi objective

O Explicit multi objective

Add objective| Delete selected

GEMERAL SOLUTION ARGUMENTS SCEMNARIOS
O Objective ID:  Objective 0 Solution aspect: network element Contamination scenario: Inone - |
N hydraulics .
Direction: |minimize - | | Leakage scenario: |none - |
sections
iecti ion: ion: | elements i : - |
Objective aggregation: Inane - | Selection: Supporting data: IDlameters =
subdivisions

Weight: |1_0 transition phase Edit fc—rmulal Diameter x Length

network element

subgraphs

Add data value [Diameters v| |A

network element parameter value IID

Add |
Add | hydraulic parameter value |head
Add I numerical value I

+ | = | % | ! | ( | ) : Min Max
Clearfcrmulal
[Diameter x Length
Check foermula Apply Cancel

17




| Gondwana

Network | Scenarios | Datasets | Decision variables Objectives | Constraints | Optimization | Run | Results | info | (multiple) Obj ective S
s sl “when are we happy?”

O Explicit multi objective

Add objective| Delete selected

GENERAL SCOLUTION ARGUMENTS

SCEMNARIOS
O Objective ID: Objective 0 Sclution aspect: [ oo clement Contamination scenario: Inone - |
. . hydraulics . . ;.
Direction: |minimize - | | otk element: ||._."._.E5 Leakage scenario: |none = |
sections

Objective aggregation: = | selection: | elements

subdivisions

Weight: |1_0. transition phase

network element

Inane Supporting data: IDiameters hd |

Edit fc—rmulal

Diameter x Length

s flexible as possible, e.g.:
Inetwork element properties| “minimize the volume of the selected pipes”
»  [network topology| “maximize the percentage of the network that is branched”

» [hydraulics] “minimize the residence times in the selected part of the network”

|' [custom equations]




Gondwana

Networkl Soenan'osl Dataseuil Decision variables | Objectives Constraints Dptimizationl Runl Resuluil Infol

Constraints:

Add constmintl Delete selectedl

OBJECTIVE FUNCTION

Process function:

OBJECTIVE FUNCTION

'l Process function: minimum_element 'l

GENERAL SOLUTION ARGUMENTS
[0 Constraint ID: Constraint 0 Solution aspect: hydraulics =
hydraulics
Type: |enforce - | Property: .
sections
iective: ion: | elements
Objective: Icurrent = | Selection:
subdivisions
Aggregation: |m,ne v | transition phase
subgraphs
GENERAL SOLUTION ARGUMENTS
[0 CenstraintID: Constraint 1 Solution aspect: |subgraphs
Type: Ipenalize - | Property: Ipressure minus clus = |
Objective: |current - | selection: |Noc|es - |
Aggregation: [ oo = |
GEMERAL SOLUTION ARGUMENTS

OBJECTIVE FUNCTION

[0 Censtraint ID: Constraint 2 Solution aspect:

Isubgmphs

vl Process function: Isum

hd

List: |Aans|uitingen

-

Type: |enforce hd I Property: |connectians per sin ¥ |
Objectiver [, ront = | selection: [, dae
Aggregation: Inone - |

=~

OBJECTIVE FUNCTION

Process function: L
- | minimum_element ¥ |

hd

GEMERAL SOLUTION ARGUMENTS
[] ConstraintD: Constraint 3 Solution aspect: |h)rc|rau|'|cs
WP |anforce Property: pressure
Objective: Icurrent Selection: INodes

L« [« [«

Aggregatinlizg |ncne

hd

CONDITION

Lookup table:

CONDITION

Operator:
Value:
Lookup table:

Penalty:

CONDITION

Operator:
Value:

Lookup table:

CONDITION

Operator:
Value:

Lookup table:

Additional constraints

“when are we really happy?’

SCENARIOS
== - | Demand: Iinput demands hd |
22.5 Network modification: [, o dified network |

Failure or contamination:
Inone hd none hd

SCENARIOS

Demand:

hd

Metwork modification: Iunmcdiﬁed network ¥ |

-

|input demands

|28
|nane vl Failure or contamination: |none
IIOOOOO

SCEMARIOS

Demand:

hd

Network modification: |unmac|'|ﬁec| network e I

hd

Iﬁ - |
ER
I,-,o,.,e - | Fzilure or contamination:

Iinput demands

none

SCENARIOS

- Demand:

El
unmodified network |

hd

Ll
IO
Inone » | Failure or contamination: Inone

|'|nput demands

Network modification:




Gondwana

Additional constraints

Networkl Soenan'osl Dataseuil Decision variables | Objectives Constraints Optimizationl Runl Resuluil Infol

Constraints:

Addconstmintl Deleteselectedl “when are we really happy ?’

GEMERAL SOLUTION ARGUMENTS OBJECTIVE FUNCTION CONDITION SCEMNARIOS

[] ConstraintD: Constraint 0 Solution aspect: Process function:

hydraulics - Inone C == - | Demand: Iinput demands hd |
Tyoe: p .| hydraulics value: Network modification:
ype: Ienforce j roperty: : alue: faa25 glwork moameation: | nmodified networl:j
sections
iective: ion: | elements : i ination:
Objective: Icurrent = | Selection: Lookup table: Incne « | Failure or contamination: Inone = |
subdivisions
Aggregation: |ncne = | transition phase
subgraphs
GENERAL SOLUTION ARGUMENTS OBJECTIVE FUNCTION CONDITION SCEMNARIOS
[0 CenstraintID: Constraint 1 Solution aspect: |subgraphs - | Process function: minimum_element | v | Operator: |:_= - | Demand: input demands - |
! Pronarb: | ! Maduer T Mabword modifieation: T !

s flexible as possible, e.g.:

“branched parts of the networks can’t supply more than 50 connections”

[scenarios]| “these junctions should have >230 kPa, even when either of these pipes are closed”




Gondwana

—

Networkl Scenan'osl Datasetsl Decision variables | Objectives | Constraints Optimizationl Runl Resultsl Infol

Algorithm settings

Genetic algorithm:

@® Generational (classical) O NSGA-II

| Population size: Iz—
Initialization: mﬂ
selector: WL‘
Replacer: Im ;| Elitism rate (%6): Im—
Terminator: IML‘ Max. # generations: Il—

Mutation: Dec.var. 0 (parameter values):

Uniform mutation rate: 0.000

Proximity mutation rate: |0.000 Proximity: Il
Flatiron mutation rate: |0.000

Crossover: Number of points |1 Rate IU

21



Networkl Scenarios | Datasets | Decision variables | Objectives | Constraints | Optimization Run | Results | Infol

e ﬁlel Progress and convergence:

Job name: Ijob 1 select

Task management

26102407

Results folder: |jh0me{|aarhka@nwg.localfgondwan; select

number of processors: Il E 2.400e+07 |
number of repeats: Ij_ E
number of retries when unbalanced: |0 E

Add job to queuel Save script | check composers | e

Job | Status | Repeat | Done | #CPUs | |
OP12_run2_dxL_allPipes.grf imported 0 1] 1]
OP12_run2_dxL _allPipes.grg imported O 0 0
loP12_run2.grf imported 0O
i 1.600e+07
1.2000407
1.085e+07
Stop/cancel selected job(s) Finalize selected job(s) Stop/cancel all jobl(s) - 2000 2000 av00 2000 2001

Messages:

hor.axis: - I vert.axis: - l

no progress/result info found for this job

22




Networkl Scenarios | Datasets | Decision variables | Objectives | Constraints | Optimization | Run Results | Infol

Job selection:
Job | Run | T S—— |Detai|ec| objective info for
OP12 run2_dxL_allPipes.grf. 0
OF1Z ru.. 1 2.58e+07 ro Pareto selection yet
Fitness: 25888010.207590755
objective obj5074: 25616411.85650258
constraint con5076:
penalty: 100000
(name, score, weight)
input_demands 2.7159835108817347 1.0
Choose specific solution from
parato front here in case of a
multi-objective problem
hor.axis: I T| vert.axis: I vl il ll il il

Load res. | Deleteres.l Referencel Export.lNPl Import.lNPl

Frame selection:

|o

Bulk imagel

Metwork:

links
2.0

1.6

1.4

1.2

1.0-

Result handling

scalebar position : ul ..
color scale : blue-white-red

line width : 2 O
dot size : 0

node labels : Fals

link labels : Fa O

node value

link w

min. {nodes) : None
max. e (nodes) : None
min. value range (links) : 1.0

max. value range (links) : None
draw nodes outside vis. range : Trus
draw links outside vis. range : True
node selection : all

link selection : all

draw valves : False

draw pumps : False

ignore segment vertices : False
Preset: Nodes >0

Preset: Nodes <0

Preset: Links =0

Preset: Links <0

Preset: Nodes auto

Preset: Links auto
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Example of application:
Growth of Amsterdam



~~ KWR
“Short term” (10 y) replacement plan waterQnet

Expansion plans of the municipality of Amsterdam



KXWR

“Short term” (10 y) replacement plan waterQnet
pat

b

Y

‘Modeled expansion plans of the municipality

Resulting pressure issues in ~2030 (and getting worse)




N

“Short term” (10 y) replacement plan

Moreover: insufficient
redundancy vs. calamities

!

Resulting pressure issues in ~2(

‘Modeled expansion plans of the municipality
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“Short term” (10 y)

e

[1]!

Optimization problem definition

28

TWR
waterJnet



Optimization problem definition
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- Pareto front showing Waternet’s most efficiént options



Optimization problem definition

~_ adaing new pipe
“Short term” (10 y) ri i assasiny <
eep cha .:‘ : i}
T Ji 1g
f
il )
Experts’ prefered option

km of changed pipes

DOE+DD 5,00E+04 1,00E+05 1,50E+05 2, 00E+05 2, 50E+05 3,00E+05

remaining pressure problems

. Pareto front showing Waternet’s most efficiént options
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waterJnet
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“Short term” (10 y) replacement plan

T |
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waterJnet

N

“Short term” (10 y) replacement plan
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Success factors in these types of applications

Utility experts take an active role in iterative problem formulation
1 - insight in system
2 - insight in question
3 - trust in algorithm
4 - trust in answer

Eight years after the first research projects with Gondwana:
- utilities ask if optimization can help with ...
- first utility with the desire to train own experts in use of Gondwana

Algorithm choice and computational speed:
- far less important than you might assume, but becomes an issue for ‘urgent questions’



Thank you for your
attention
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Karel van Laarhoven
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Ina Vertommen
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+31611599514




~ ITWR
DMA sensor network design dunea &

DUIN & WATER

o . e
How to subdivide a network into DMA’s" District Metered Area

DMA with inflows and outflows

DMA’s: subnetworks with flow meters on the boundaries DMA Boundary

*  DMA’s provide insight in distribution (leakage, flow, ...)

* Historically, DMA’s not used in NL

* Many network changes required to create DMA’s now

(closing pipes, installing flow meters, ...)
- Expensive How do | get as many DMA’s as possible
- Impact on hydraulics and topology with as few network changes possible?

36
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2500

Optimization step 1: DMA design
* As few boundaries as possible (= cheap)
* As small DMAs as possible (= sensitive)

14 the utility experts

I 16 ..this one was chosen for The Hague by

2000

* No boundaries in transport mains (= realistic)

1500 .

The algorithm produces an overview of
optimal combinations of
# boundaries vs. DMA size...

net boundary flow [m3/h]

1000

19 L4 . .

150 200 250 300
# boundaries
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DMA sensor network design dunea &

DUIN & WATER

Optimization step 2: boundary configurations

* Close as many boundaries as possible
(cheaper, but impact on hydraulics, so...)

*  Maintain pressure service level (= customer

satisfaction) | open boundary (flow meter)

N . | |
* Maintain security of supply (= law) closed boundary (valve)

38

possible to close 60% of
pipes without issues
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@

Optimization step 3: transition
Gradual introduction of DMA’s with yearly budget
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(a)

meshed
branched

=

De Watergroep

Networks in Flanders typically are highly meshed, with large
redundancy but also with large residence times and sediment issues
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=

(a)

De Watergroep

Maximize branched network
Minimize network volume

Maintain minimum pressures
Keep branched sections small

Optimization problem to create a network with a
‘Dutch structure’ (self cleaning design), maintaining
sufficient reliability of supply.

meshed
branched




N

Long term design & water quality

(a)

Maximize branched network
Minimize network volume
Maintain minimum pressures
Keep branched sections small

branched

KWR

—

De Watergroep

About 66% of the
network length can
be converted from
a meshed to a
branched structure
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De Watergroep
Maximize branched network

Minimize network volume
Maintain minimum pressures

utcomes for De Watergroep:
Input for strategical
discussion on designing for
water quality

* Input for strategical

discussion on designing for

‘security of supply’

l* Input on strategical

discussion on fireflow

requirements

Piloted design approach,

[ ready to roll out

: N
Keep branched sections small P

branched

(a) (b) ‘
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Water Distribution Networks (WDNs)

* Network of interconnected pipes, valves, pumps, reservoirs and tanks
* Main objective: Deliver potable water to consumers 24x7reliably

* Challenges: Leakages, Scheduling of network operations (monitoring & control)

» In Norway, ~ 30% loss in

leakages!
Leakage Detection and Localization (LDL)
p .
§ m Detection Finding that leak(s) has occured
@
%’ —F Belecl [ETdle]a  Approximating the location h
Ry,
LB m Pinpointing Exact position of leak — Measure of repair time
|—> Difficult for low flow leaks! (<I LPS) _|

13/02/2023 Lead Detection Using Autoencoders



The three-step strategy in Leak Detection

Primary Model \

Get measurement
data and base
demands )

Demand calibration
using time series
analysis )

Get WDN pipe
network data

Model calibration
using optimisation-
simulation
framework J

Run EPANET
simulations

v

J/

Create training,
validation and test

Surrogate Model

'Y

data from network
states )

-

13/02/2023

It

Input Layer x

]

Dense

Dense

¥

Output Layer X

<
<«

Leak Detector

A

[

Minimise training
loss

Training

‘f Reconstructed I/p X
'l from no leak inputs

[ Compute ISE ]——P[

Rank faulty nodes
for localisation

J

Yes
<o >

Test using leak and
no leak data

?

i

‘f Determine threshold ]

Q for leak detection

Lead Detection Using Autoencoders




Decoupling Hydraulics using Surrogate Modeling

* In the first step, demand calibration and pipe roughness calibration is done using
combination of time series modeling and optimisation framework.

* The 2" and 3" step involves the development of surrogate models using Artificial Neural
Networks (ANNs).

* These surrogate models ‘learn’ to mimic physical changes in the target signals depending on
the correlations among input signals and event(s) that causes changes in them.

* Encoder-decoder models are special class of unsupervised methods that are used to
reconstruct input signals.

* In this work, two types of encoder-decoder models are tested on a synthetic WDN — a
deterministic model and a generative model for LDL.

13/02/2023 Lead Detection Using Autoencoders 4



Autoecoders (AE) as surrogates for detection

Encoder

13/02/2023

Bottleneck

* AEs are unsupervised ANNs that are used to learn
‘encodings’ efficiently.

* They perform non-linear dimensionality reduction at the
bottleneck layer to preserve maximum useful information
of input features.

* The outputs are approximated reconstructions of inputs —
hence used for anomaly detection.

Decoder

Lead Detection Using Autoencoders 5



L-Town WDN Case Study

13/02/2023

@® Pressure sensors

Battle of the Leak Detection and Isolation
Methods (BattLeDIM) competition (Vrachimis et al., 2020)

Lead Detection Using Autoencoders

769

Network Details:

= 782 nodes

= 905 pipes

= 2 Reservoirs

* | Tank and | Pump
= 3 DMAs

= 33 Pressure sensors



Dataset and Leak Scenarios

 Steady-state analysis is done using EPANET for two years 2018 and 2019 at 5-minute hydraulic timestep
* Two types of leaks are simulated at different times — Abrupt pipe bursts and slow increase incipient leaks

35 1
— p31 p277
‘ p158 p280
30 M | —— pi183 p331
/ | —— p232  —— p4a26
5 r ] p257 p455
= [ —— p369 —— p514
= pd27 —— p523
E20 - - pa61 p586
g [ p538 —— p653
s " p628 p680
= | —— p654 p710
= \ p673 p721
10 |' —— p810 p762
I‘ —— p866 —— p800
. / 1 i P pl23 p827
IJ —— pl42 —— p879

AN divaEE

0

Jan Feb  Mar Apr May Jun Jul Aug Sep Oct Nov  Dec

2018
Timestamp

* A total of 33 leak leak scenarios were simulated in addition to normal operational state.
* All measurement locations and steady states are stored in a database for further analysis.

13/02/2023 Lead Detection Using Autoencoders



Reconstruction error [-]

Results of AE as surrogates

08

0.7

0.6

0.5

04

03

0.2

0.1

0.0

2018-07-01

13/02/2023

Autoencoder architecture

Autoencoder 6

Loss function

Mean square error

Activation function Tanh

Optimizer Adam

Learning rate 0.025

Epochs 2500

Batch size 750

Training interval 14 days
Validation interval 14 days
Testing interval 14 days

Quick burst leak at p183 (16.2 m3/hr)

— 469

- n722
n726
n752

2018-09-01 2018-09-15

Time to detect ~ 0.5 mins

Reconstruction error [-]

0.00

Incipient leak at p461 (4.28 m3/hr)

'V - n105

g“r/' 4 —— n114

"] | fl — 1516
fn JE—

57\ n726

/

| ) Y | A

2018-02-01 2018-02-15

2018-03-15 2018-04-01
Time

Time to detect ~ 22 hrs
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Variational Autoencoders (VAE) as surrogate

* AEs fails to capture the uncertainties in the encoded features in the latent space.

* VAEs aims to capture uncertainties in hydraulic model and stochastic demands for leakage detection and
localisation.

Latent mean

Latent std

AE VAE

13/02/2023 Lead Detection Using Autoencoders



Variational Autoencoders (VAE) as surrogate ormal states

Neural network Neural network
mapping x to z mapping z to x

Leak event or sensor
faults

Loss function is sum of reconstruction error and KL divergence measure from prior

VAE Loss = L(x,X) + XKL (q (z|x) Il p(2))

13/02/2023 Lead Detection Using Autoencoders 10



Results of VAE as surrogates

Training data

]
~

Steady states

x > 784

at all nodes are considered
z—> 20

Ideal scenario

2Jnssald pazipJepuelg

5
5

-
e e T e T L~ R = R = |

3

=]

aJnssaud pazipJepuelg

w =} w ] I =
~ n ~ - n
— — — — = =

Reconstructed data

0.25

0.00

0.00

0.00

11
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Results of VAE as surrogates

T-SNE Dimensionality Reduction of z

Epoch O Epoch 25

Clear separation between
encoded means of z

=100 A

—100 -
—50 0 0 50
X2
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Results of VAE as surrogates

9JNssa.d pazipJepuelsg
=t -] o

™ 3 !
n_- =] =}

R R PR

™~
=1 U 0
I I |

-0.8

Probable leak locations
‘

Lead Detection Using Autoencoders

T Sty
&@.@% L .m_mﬁwv

™ ]
=1 0 U
| I |

@i%%w%&ﬁ

—0.2
0.4
0.6
0

Leak in p653

1

o mkm o ok GO

T
-
e

=

=T -:rmr—-m.cn-—lg:x
e =]

13/02/2023



Combining LSTMs with AE
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Reconstruction errors and Seasonality

Residual Pressures (m2)
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* Residuals reflects long term seasonal behavior

* One possible solution is to include seasonality models and add them with reconstructions

13/02/2023 Lead Detection Using Autoencoders 16
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Summary

* Two surrogate models were developed using AE and VAE architectures.
* The methods were tested on artifically simulated dataset from 33 leak events.
* AE performed better at detecting abrupt pipe bursts.

* AE failed at detecting incipient leaks despite the assumption of high number of sensors for the given size of the
network.

* Attempts have been made to emulate pressure states at all locations using VAE with gaussian prior and using LSTMs
for learning temporal correlations.

* Generative models such as VAE can enrich the information on reconstruction errors and their distributions.

13/02/2023 Lead Detection Using Autoencoders 17
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Leak Localization with
the Dual Model

100
DUAL MODEL FRACTION OF PIPES CHECKED BEFORE
LOCALIZING THE CORRECT LEAKING PIPE
80 FOR 27 DIFFERENT LEAK SCENARIOS
60
40
20

[%]

60

0==== =i =====i=i-_
20
40

80

100 CORRELATION MODEL

Erik Nordahl, Edo Abraham, Jochen Deuerlein, Olivier Piller, Franz Tscheikner-Gratl, David Steffelbauer
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Leak status and
consequences of leaks

* 32 % in Norway, 23 % in
Europe

* Conseguences
* Economy
* Environment
* Increased energy use
* Health




How do we handle leaks today?

* A passive approach
- Only reported leaks are fixed

— Leads to large volumes of lost water



How should we handle leaks?

* The active approach aims to limit the impact of leaks

* Network monitoring
* Network examining
* Or other tools which are:

* Proactive
e Predictive

Q [I/5]

Localization

Repair

v

Time (s)

Q [I/5]

Localization
Repair

............

Saved water

A 4

Time (s)



The currently most

commonly used methods

have some limitations:

* |neffective

* Expensive

* |nconsistent
performance

* Labor-intensive



Model-based leak localization

* Tries to circumvent these shortcomings in finding leaks by:

* Comparing estimates from hydraulic simulations
* With real data

* Advantageous because:
* Cost-efficient
» Utilizes sensor technology
* Performs well regardless of pipe material

é



Model-based leak localization - challenges

e Currently used on:

* Virtual networks
* Small uncomplicated real networks
* Very large leak scenarios

* - Model-based leak localization is rarely seen outside of the academic
environment



Hydraulic model setup Measurements
« Pipes « Pressure sensors
« Nodes « Flow sensors
* Reservoirs « Tank water level
. FHE sensor

Before leak

Rougness
« Demand

After leak

h 4

Vector with measured

Leak matrix, (8) Vector without leaks (w) pressure, ()

Correlation

Model

Fault SIg(Eaét'ar)e S Fault indicator vector (¢)

Correlation vector

h 4

Rank correlations
descending




Dual Model

Virtual
Valve

Virtual
Reservoir

Existing
Pressure
Node

Diameter Elevation

[m]

[m]
0.125[} 500

0.100ff 475
0.075 450

0.050@ 425



Aim of the paper

e Test the Dual Model in a real-world case-study
 Compare it with the Correlation Method

 Test for different:
* Leak types
* Leak locations
* Model calibrations
* Number of sensors



Case-study: Graz-Ragnitz, Austria

* Open hydrants to simulate leak scenarios
e 17 leaks
* Single and multiple leaks simultaneously

* Measure
* Pressure — 12 sensors - Hs—F o
e System inflow H1
* Leak size

HS

H2

H4

Inlet tank




Hydraulic model calibration

 Three different calibrations created
* C1: only calibrated for demand
e C2: calibrated for elevations + C1

* C3: roughness and minor loss + C2



Adjustments on measurements

* Tank level
* Approximated with second-order splines

* Pressure sensors
* Resampled to produce one value every minute

* Sensor clocks
* Corrected manually



Evaluation criterias

* Topological Distance [m]
* Distance from suggested leak location to real leak location

* False Positive Fraction [%]
* Fraction of pipes suggested before the correct pipe

 Maximum Span [m]
* Max distance between two FP-pipes
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Dual Model outperforms!



Results with different calibrations
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Results with different number of sensors

TOPOLOGICAL DISTANCE MAXIMUM SPAN FP FRACTION
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Limitations of the Dual Model
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Possibilities with the Dual Model

* Handle uncertain input
* Functions well with several leaks present

e Robust



Conclusion

* The Dual Model can localise real leaks with different locations and magnitudes
(1L/sto15L/s)

* The Dual Model can localise leaks without a well-calibrated model, which is a
significant advantage for water utilities.

* The Dual Model shows better performance with three pressure sensors than the
more commonly used Correlation Method obtained with 11 pressure sensors

* The Dual Model’s main limitations are that the model is sensitive to the leak’s
Iodqationdin the water distribution network and that the nodal elevations must be
adjuste



Thank you for your attention!

e Contact information:

Email: erik.nordahl@multiconsult.no
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Introduction Method

Hydraulic models

Hydraulic simulators are widely used
. But can computationally expensive for applications like

e Design and optimization

e Criticality assessment

e Real-time control

e Core model of a digital twin

Norwegian University of
@ \ I \ l | Sdencegand Technolg GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING 2
8y 10/02/2022 - Bulat Kerimov



Introduction Method

Surrogate models

Artificial Neural Networks (ANNs) are well established candidates for a surrogate model

Input Hidden Output
layer layers layer

. However, they need to be
. retrained for every change in the

. topology
Figure 1 - Schematic artificial neural network /
E NTNU | Norwegian University of 2050 GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING 3
Science and Technology 10/02/2022- Bulat Kerimov



Introduction Method

Graphs in WDS

Graph is a mathematical representation of a network

« G=(V,E)
node adge Adjacency Graph representation
E matrix of WDS
e /
Figure 2.A - example of a graph Figure 2.B - network layout of L-Town water /
system
@ NTNU | ?gg:feglaagdu'rrgzﬁ;%%;; 2050 GRAPH NEURAL NETWORKS FOR WATER DISTRIBU:R’;ZS/ESEZEMBZ/II?[DE;‘L;:\LGV 4



Introduction Method

GNNs as surrogate models

Y € RNV*G Y41 € RNxG"

i - 1 : |
ERELRE R R :

. However, there is no evidence
- of good transferability :

. properties :
Figure 3. A graph neural network (GNN) layer with a 2-hop neighbourhood. The LR L E LR R R LEERRRIEEERRRE :
figures from left to right indicate how the node signal in the black node
propagates throughout the network. The same reasoning is applied for every
other node in the graph.
E NTNU | quvvegian University of GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING 5
Science and TE[hangy‘ 10/02/2022 - Bulat Kerimov



Introduction Method

Edge-level representation

Node-level Edge-level
representation representation

=

E T | Norwegian University of 2050 6
q q l Science and Technology GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov



Introduction Method

Step 2: Pressure estimation

Second step is based on Hazen-Williams equation and a matrix inversion

<& ' <HHD

Step 1: Step 2: /
Flowrate interpolation Headloss reconstruction

Norwegian University of
@ Q I q l | Sdencegand Technolg 2050 GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING 7
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Introduction Method Experiments

Experiments

Compare accuracy of the model with the state of the
art

i. On the same network topology (In-the-domain)
ii. On the unseen before network (Out-of-domain)

Norwegian University of
@ \ I \ l | Sdencegand Technolg GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING 8
8y 10/02/2022 - Bulat Kerimov



Introduction Method Experiments

Dataset generation

8 base water networks ~60 000 generated

Introduced variability

from the literature simulation

e  Varying demands

e  Variable pipe
parameters

e  Varying topology

(d)

E T | Norwegian University of 2050 9
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Introduction Method Results

| .
Results: in the domain performance
.
Dataset with varying demands, R? - %u
(J'i__i')b
Water network
Model L-Town Net-3 Pescaria KL MOD Asnet2 Z)
heads  GNN 0.996 0.993 0999 0693 0.998 0986 0997
Ours 0998 0.956 0968 0902 0.970 0.983 0.997

a GNN 0.989 0.001 0.246 0.663 0.182 0.907 0.956
owrates g 1.000 0.991 0.994 0.896 0.998 0.994 1.000
Table 1: Comparison of performances of surrogate models pressures and flowrates
E NTN U | ?g;v:(eeglaa:du'rr:\[!ﬁ;soﬁggj GRAPH NEURAL NETWORKS FOR WATER DISTRIBU.I;Ié?";i:g;g’gmgﬁf;h:%% 10



Introduction Method Results

Results: out-of-domain performance
Model tested on 2 networks that were not present in the dataset
R2 _ EG;‘,‘j)j
Sy =)
Water
Model Asnet2 Z)

flowrates
Ours 0.983 0.862

Table 2: Evaluation of transferability on unseen networks

/
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Introduction Method Conclusion

Conclusion

- We proposed a candidate for a surrogate model of WDS
- Such model accurately reproduces flowrates

- Edge-centric GNNs show higher potential for transferability
than a traditional GNN

/
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Purpose and Objectives

The problem
« Small municipalities not benefiting from machine learning (ML) trained models

Objectives
« Evaluate if a “Global” model which is trained with many municipalities’ pipe
break data can be useful for the prediction of another municipality’s pipe

breaks

« Similarly, evaluate the transferability of a “local” model

2 @ NTNU



Data

» Predictions based on historical . :
break data The first break of pipe matters a lot!

(a)

=
o
o

Data:
*  Water distribution network of 9

o]
o

60
municipalities of Norway

40
* Total length of pipes =

20
~ 7000 km

Cumulative % of pipe length

Ol -
900 1920 1940 1960 1980 2000
Installation year

— Ut — Ut5 — Ut.8

— Ut.2 — Ut.6 — Ut9
Break records started around — Ut.3 Ut.7  —a— Start of break recordings
1970s — Uta

Left-truncated data: breaks In order to capture the first break records, all pipe
happened before 1970 installed before 1945 are discarded (19% of the data)

Still not know is the reason of the breaks!

3 @ NTNU



Method: Random Survival Forest (RSF)

Random Forest Survival modeling
Instance 1.0
Random Forest/ \ 0ok ;iEch
084 T LT HPPE
SN '; — —al
07 W, H === LDPE (Black)
3 3
£os| ey
Tru, 1 Tree-2 Tree-n “ 041 fmmy
03 .“1 : :
Class-A Class-B Class-B 02, Ty :
[Vr\'fajor'ily-\'oting l o
PO, A — OIOb 2,000 4,d00 S.dDO S‘DIDO 10,6&)0 12.b00 14,000 15‘600 18,b00 20,000
Final-Class | Time to Failure (days)

Random Survival Forest (RSF): A combination of Random Forest and survival models

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The annals of applied statistics, 2(3),
841-860
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Random Survival Forest - Performance evaluation

Concordance index (C-index) is the metric to evalute the performance of RSF

Observed Predicted Observed Predicted
probability probability
of failure of failure

1 (failed) 0,91 0 (not failed) | 0,75

1 (failed) 0,72 0 (not failed) | 0,62

1 (failed) 0,60 0 (not failed) | 0,60

Concordants (1 point) | Discordants | Tied (0.5)
(O point)
1 0,91-0,75 0,72 -10,75 0,60 — 0,60
2 0,91-10,62 0,60 -0,75
3 0,91 - 0,60 0,60 - 0,62
4 0,72-0,62
5 0,72 -0,60

C-index = (5+0,5)/9
=0,61

C-index:

0,5 — random model

1,0 — perfect model

0,0 — perfectly wrong model

C-index-ipcw
For high amount of censored data: C-

index overestimates performance, use
instead C-index-ipcw

5 @ NTNU



Results

Prediction performance of global models

0.9 1

o}
08| =

0.8 1 %I
; %
0.7 _:_Lo 7 % Q
=] >
c )
1 e
“ 0.6 £ 0.6
o
0.5 1 0.5
0.41 0.4

Utl Ut2 Ut3 Ut4 Ut5 Ute UL7 Ut8 ULO

B Local utilities' models —— Mean performance of local utilities
B4 Predictions from global models Mean prediction performance of global models
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Results

Prediction performance of reference models

0.9

0.8

e
~

o
o

C-index-ipcw

0.5

0.4

Q0

o0

ot H T+

o0

Ut.1 Ut.2 Ut.3 Ut.4 Ut.5 Ut.6 Ut.7 UL.8 UL.9
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E= Reference utility
E= Local utilities
E= Predictions from reference utility

UL.1 UL.2 UL.3 Ut.4 Ut.5 Ut.6 Ut.7 UL.8 UL.9

—— Mean performance of local utilities

Ut.1Ut.2 Ut.3 Ut.4 UL.5 UL.6 Ut.7 UL.8 Ut.9

Mean prediction performance of reference utility



Results

Survival probability

0.3 1 0.3

0.2 = T T T

Group survival curves

Survival probability

0.3
0.2 T T T
0 20 40 60
time [years] time [years] time [years]
—-- median, all previous breaks mixed ——- median, no previous breaks —-- median, 1 or more previous breaks

0 75% interval, all previous breaks mixed Bl 75% interval, no previous breaks Bl 75% interval, 1 or more previous breaks
[0 95% interval, all previous breaks mixed [ 95% interval, no previous breaks B 95% interval, 1 or more previous breaks
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Take home messages

e Properrecord of breaks are important

e Pipe break models can be transferred between representative utilities

e Proper grouping reduces the uncertainties of group survival curves

e A previous pipe break is the most dominant indicator for the time to
next break

10 @ NTNU
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