
   

 

 

 

Training Event LL Bodø/ Norway 

 

Topic: Water distribution system modelling, optimization, and leak detection 

As Part of our B-Watersmart (https://b-watersmart.eu/) training events we invite the 

Norwegian Partners as well as other interested Norwegian municipalities, utilities, 

consultants, researchers, and students to an online event with multiple presentations. 

The event will take place on the 10th of February. Please subscribe using the following 

link before the 7th of February: https://form.jotform.com/230243281165347 

 

Program: 

09:00-09:10:  Short Introduction of the project 

09:10-09:40: Presentation Karel van Laarhoven (KWR): 

Optimization for water distribution systems 

09:40-09:50 Questions 

09:50-10:00 Presentation Prasanna Mohan Doss (NTNU): 

Variable Autoencoders for Leak detection 

10:00-10:05 Questions 

10:05-10:15 Presentation Erik Nordahl (Multiconsult/NTNU): 

Dual model for leak localization 

10:15-10:20 Questions 

10:20-10:30 Presentation Bulat Kerimov (NTNU): 

Graph Neural Networks for Water distribution system 

modelling 

10:30-10:35 Questions 

10:35-10:45 Presentation Shamsuddin Daulat (NTNU): 

Evaluating the generalizability and transferability of 

water distribution deterioration models 

10:45-10:50:  Questions 

10:50-11:00:  Discussion 

https://b-watersmart.eu/
https://form.jotform.com/230243281165347


Accelerating Water Smartness 
in Coastal Europe and beyond

b-watersmart.eu

Horizon 2020 project

Call: H2020-SC5-2018-2019-2020

Greening the economy in line with the 

Sustainable Development Goals (SDGs)

Contact:  franz.tscheikner-gratl@ntnu.no

mailto:franz.tscheikner-gratl@ntnu.no
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The project is:

• Grounded on 6 coastal European cities and regions

as 6 interconnected Living Labs (LLs)

• Supported by Communities of Practice (CoPs) and 

a European Innovation Alliance (INALL)

• Promoted by the Aqua Research Collaboration ARC –

A Network of European Water Research Institutes  

B-WaterSmart accelerates the

transformation to water-smart economies

and societies in coastal Europe and beyond













Research goals in B-Watersmart for Living Lab Bodø 

Concepts for water-smartness & their technological indicators 

– Leakage detection and localization in Water Distribution Networks (WDNs)

– Infiltration in Wastewater Collection System

– Smarter stormwater management

– Potential for biogass production from small decentralized wastewater treatment plants

Partners: 

Living Lab: Bodø Kommune

Industry Partners:

1. Nordkontakt – Data collection and Analysis (IT & Communication)

2. TECHNI – Leakage & infiltration detection sensors (IIoT – LPWAN / nb-IoT)

Research Partner: NTNU and SINTEF



Research goals in B-Watersmart for Living Lab Bodø 

Concepts for water-smartness & their technological indicators 

– Leakage detection and localization in Water Distribution Networks (WDNs)

– Infiltration in Wastewater Collection System

– Smarter stormwater management

– Potential for biogass production from small decentralized wastewater treatment plants

Partners: 

Living Lab: Bodø Kommune

Industry Partners:

1. Nordkontakt – Data collection and Analysis (IT & Communication)

2. TECHNI – Leakage & infiltration detection sensors (IIoT – LPWAN / nb-IoT)

Research Partner: NTNU and SINTEF



Technologies



Technologies

Tools



Technologies

Tools

Algorithms



This project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No. 869171. The publication reflects only the authors’ views and the 

European Union is not liable for any use that may be made of the information contained therein.
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Optimization for   
drinking water networks

Karel van Laarhoven, KWR



KWR Water Research Institute

applied water research
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Water Quality

Future-proof
Network Design

Asset 
Management

chemical

microbiological

sediment

water demand

design philosophy

smart networks

multi-utility

operation and
maintanance

network condition

optimization
really helps here



Network Optimization
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Family of mathematical tricks to efficiently explore and compare a multitude of 

possible solutions

Key mathematical ingredients:

• description of solutions (design variables)

• judging of solution quality (objectives & constraints)

• proposal of (new) solutions (variator)

Numerical optimization
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Solution cost
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First generation of solutions

Ideal situation

Solution in our case: 
certain network design

Numerical optimization



Numerical optimization
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Second generation

Solution cost
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nth generation

Solution cost

Numerical optimization
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Pareto front: 
Playing room to trade
between different goals

Solution cost

Numerical optimization
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Forced to approach the goal mathematically

- Enhances insight in questions/goals

- Makes choices more objective

- Makes intuition more reproducable/transparant

Optimization = robust automation

- Room to explore and adjust ‘with a push of the button’

- This supports ideation and re-evaluating rules of thumb

- Once develloped, the approach is extremely re-usable

(Optimization = ‘optimal’)

Optimization at drinking water utilities – Why?
(given that we have been tackling any number of complex design question by hand just fine, so far)

Hopefully capture some knowledge
of the older generation

Hopefully supports the soon to be
overloaded younger generation



Optimization at drinking
water utilities – approach

Gondwana
Swiss army knife software tool to help with:
• formulating,
• analysing,
• solving
a multitude of different, complex network
design questions.

Main strength: a design focussed on   
maximum flexibility in problem formulation

Inside: Epanet, hybrid evolutionairy algorithms
and accumulating research scripts.

MASTER PLANS PRIORITIZATION

SENSOR PLACEMENT VALVE SECTION DESIGN

CALIBRATION

FLUSHING PLANS

CALAMITY RESPONSE

…
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Gondwana - structure

Network & Selections

e.g.: a subset of pipes
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Gondwana - structure

General data sets
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Gondwana - structure

Design variables
“what can be changed?”
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Gondwana - structure

As flexible as possible, e.g.:

• “Change any parameter (diameter, status, …) of selected pipes, chosen from list”

• “Divide selected junctions into a number of clusters (DMA’s)”

• “Assign a ‘sensor-status’ to a number of junctions in the network”

• …

Design variables
“what can be changed?”
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(multiple) objectives
“when are we happy?”
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As flexible as possible, e.g.:

• [network element properties] “minimize the volume of the selected pipes”

• [network topology] “maximize the percentage of the network that is branched”

• [hydraulics] “minimize the residence times in the selected part of the network”

• [custom equations]

(multiple) objectives
“when are we happy?”
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Additional constraints
“when are we really happy?”
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Additional constraints
“when are we really happy?”

As flexible as possible, e.g.:

• “branched parts of the networks can’t supply more than 50 connections”

• [scenarios] “these junctions should have >230 kPa, even when either of these pipes are closed”

• …
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Algorithm settings
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Task management
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Result handling

Choose specific solution from
parato front here in case of a 
multi-objective problem



Example of application:
Growth of Amsterdam



25Expansion plans of the municipality of Amsterdam

“Short term” (10 y) replacement plan



26Modeled expansion plans of the municipality Resulting pressure issues in ~2030 (and getting worse)

“Short term” (10 y) replacement plan
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“Short term” (10 y) replacement plan

Resulting pressure issues in ~2030 (and getting worse)

…

Moreover: insufficient
redundancy vs. calamitiesModeled expansion plans of the municipality



“Short term” (10 y) replacement plan

28

Try adding new pipes
Try enlarging existing pipes

Try placing new pumping station
~

Attain minimum pressures
Attain sufficient redundancy

Respect pumping station capacities
Keep changes minimal

Optimization problem definition
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“Short term” (10 y) replacement plan
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“Short term” (10 y) replacement plan

Try adding new pipes
Try enlarging existing pipes

Try placing new pumping station
~

Attain minimum pressures
Attain sufficient redundancy

Respect pumping station capacities
Keep changes minimal

Optimization problem definition

remaining pressure problems
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Pareto front showing Waternet’s most efficiënt options

Experts’ prefered option



31

“Short term” (10 y) replacement plan

…
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“Short term” (10 y) replacement plan

…

Main outcomes for Waternet:

• Quantitative insight in the
size of the solution needed

• Input for first no-regret
replacement decisions

• Input for discussion with
management on budgets

• Input for strategic discussion
with municipality

• Very easy to further explore
other solutions
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Utility experts take an active role in iterative problem formulation

• 1 - insight in system

• 2 - insight in question

• 3 - trust in algorithm

• 4 - trust in answer

Eight years after the first research projects with Gondwana:

• - utilities ask if optimization can help with …

• - first utility with the desire to train own experts in use of Gondwana

Algorithm choice and computational speed: 

• - far less important than you might assume, but becomes an issue for ‘urgent questions’

Success factors in these types of applications



Thank you for your
attention



Groningenhaven 7

3433 PE Nieuwegein

The Netherlands

T +31 (0)30 60 69 511

E info@kwrwater.nl

I www.kwrwater.nl

@KWR_Water KWR KWR_Water

Ina Vertommen
Ina.Vertommen@kwrwater.nl

+31 61 15 99 514

Karel van Laarhoven
Karel.van.Laarhoven@kwrwater.nl

+31 6 53196485
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How to subdivide a network into DMA’s?

• DMA’s: subnetworks with flow meters on the boundaries

• DMA’s provide insight in distribution (leakage, flow, …)

• Historically, DMA’s not used in NL

• Many network changes required to create DMA’s now

(closing pipes, installing flow meters, …)

- Expensive

- Impact on hydraulics and topology

District Metered Area

How do I get as many DMA’s as possible
with as few network changes possible?

DMA sensor network design
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DMA sensor network design

Optimization step 1: DMA design

• As few boundaries as possible (= cheap)

• As small DMAs as possible (= sensitive)

• No boundaries in transport mains (= realistic)
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DMA sensor network design

Optimization step 1: DMA design

• As few boundaries as possible (= cheap)

• As small DMAs as possible (= sensitive)

• No boundaries in transport mains (= realistic)

Optimization step 2: boundary configurations

• Close as many boundaries as possible

(cheaper, but impact on hydraulics, so…)

• Maintain pressure service level (= customer 

satisfaction)

• Maintain security of supply (= law)

open boundary (flow meter)
closed boundary (valve)

possible to close 60% of 
pipes without issues



DMA sensor network design

Optimization step 3: transition
Gradual introduction of DMA’s with yearly budget



Long term design & water quality

meshed
branched Networks in Flanders typically are highly meshed, with large 

redundancy but also with large residence times and sediment issues



Long term design & water quality

Maximize branched network
Minimize network volume

Maintain minimum pressures
Keep branched sections small

meshed
branched

Optimization problem to create a network with a 
‘Dutch structure’ (self cleaning design), maintaining
sufficient reliability of supply.



Long term design & water quality

Maximize branched network
Minimize network volume

Maintain minimum pressures
Keep branched sections small

meshed
branched

About 66% of the
network length can
be converted from
a meshed to a 
branched structure



Long term design & water quality

Outcomes for De Watergroep:
• Input for strategical

discussion on designing for
water quality

• Input for strategical
discussion on designing for
‘security of supply’ 

• Input on strategical
discussion on fireflow
requirements

• Piloted design approach, 
ready to roll out

Maximize branched network
Minimize network volume

Maintain minimum pressures
Keep branched sections small

meshed
branched



Leak Detection Using 
Autoencoders

Prasanna Mohan Doss (NTNU)

Magnus Renslo Totland (NTNU)

Franz Tscheikner-Gratl (NTNU) 

Marius Møller Rokstad (NTNU)

David Steffelbauer (KWB, Berlin)



• Network of interconnected pipes, valves, pumps, reservoirs and tanks

• Main objective: Deliver potable water to consumers 24x7reliably

• Challenges: Leakages, Scheduling of network operations (monitoring & control)

Water Distribution Networks (WDNs)

Leakage Detection and Localization (LDL)

L
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t

Detection

Localisation

Pinpointing

Finding that leak(s) has occured

Approximating the location 

Exact position of leak Measure of repair time

Difficult for low flow leaks! (<1 LPS)

13/02/2023 Lead Detection Using Autoencoders 2

In Norway, ~ 30% loss in 
leakages!



The three-step strategy in Leak Detection

Get measurement
data and base 

demands

Start

Demand calibration
using time series 

analysis

Get WDN pipe 
network data

Model calibration
using optimisation-

simulation
framework

Run EPANET 
simulations

Create training, 
validation and test 
data from network

states

Input Layer 𝒙

Output Layer ෝ𝒙

Minimise training 
loss Determine threshold

for leak detection

Test using leak and 
no leak data

Tr
ai

n
in

g

Primary Model Surrogate Model

Leak?
No

Yes

Reconstructed I/p ෝ𝒙
from no leak inputs

Compute ISE
Rank faulty nodes 

for localisation

Stop

Leak Detector

1 2

3
Dense

Dense
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Decoupling Hydraulics using Surrogate Modeling

• In the first step, demand calibration and pipe roughness calibration is done using 
combination of time series modeling and optimisation framework. 

• The 2nd and 3rd step involves the development of surrogate models using Artificial Neural 
Networks (ANNs).

• These surrogate models ‘learn’ to mimic physical changes in the target signals depending on
the correlations among input signals and event(s) that causes changes in them.

• Encoder-decoder models are special class of unsupervised methods that are used to 
reconstruct input signals.

• In this work, two types of encoder-decoder models are tested on a synthetic WDN – a 
deterministic model and a generative model for LDL.

13/02/2023 Lead Detection Using Autoencoders 4



Autoecoders (AE) as surrogates for detection

x1

x2

xn

ෝ𝑥1

ෝ𝑥2

ෝ𝑥𝑛

.

.

.

.

.

.

.

.

.

.

.

.

.
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Encoder Decoder

Bottleneck

• AEs are unsupervised ANNs that are used to learn

‘encodings’ efficiently.

• They perform non-linear dimensionality reduction at the

bottleneck layer to preserve maximum useful information

of input features.

• The outputs are approximated reconstructions of inputs –

hence used for anomaly detection.  
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L-Town WDN Case Study

Area C

Area A

Area B

Network Details:

▪ 782 nodes

▪ 905 pipes

▪ 2 Reservoirs

▪ 1 Tank and 1 Pump

▪ 3 DMAs

▪ 33 Pressure sensors

Pressure sensors

Battle of the Leak Detection and Isolation

Methods (BattLeDIM) competition (Vrachimis et al., 2020)

13/02/2023 Lead Detection Using Autoencoders 6



Dataset and Leak Scenarios

• Steady-state analysis is done using EPANET for two years 2018 and 2019 at 5-minute hydraulic timestep

• Two types of leaks are simulated at different times – Abrupt pipe bursts and slow increase incipient leaks

• A total of 33 leak leak scenarios were simulated in addition to normal operational state.

• All measurement locations and steady states are stored in a database for further analysis.

13/02/2023 Lead Detection Using Autoencoders 7



Results of AE as surrogates

Autoencoder architecture Autoencoder 6

Loss function Mean square error

Activation function Tanh

Optimizer Adam

Learning rate 0.025

Epochs 2500

Batch size 750

Training interval 14 days

Validation interval 14 days

Testing interval 14 days

Quick burst leak at p183 (16.2 m3/hr) Incipient leak at p461 (4.28 m3/hr)

13/02/2023 Lead Detection Using Autoencoders 8

Time to detect ~ 0.5 mins Time to detect ~ 22 hrs



Variational Autoencoders (VAE) as surrogate

• AEs fails to capture the uncertainties in the encoded features in the latent space.

• VAEs aims to capture uncertainties in hydraulic model and stochastic demands for leakage detection and

localisation.

ො𝑥𝑧

σ

µ

𝜇 + 𝜎 Ꙩ 𝜀

𝜀 ~𝒩 (0,1)

Latent mean

Latent std

ො𝑥𝑥 𝑧

AE

𝑥

VAE
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Variational Autoencoders (VAE) as surrogate Normal states

Leak event or  sensor 
faults

Loss function is sum of reconstruction error and KL divergence measure from prior

VAE Loss = ℒ 𝑥, ො𝑥 + 𝛽σ𝐾𝐿 (𝑞 𝑧|𝑥 ∥ 𝑝 𝑧 )

𝑞 𝑧|𝑥𝑥 𝑧 𝑝 𝑥|𝑧 ො𝑥

Neural network

mapping 𝑥 to 𝑧

Neural network

mapping 𝑧 to 𝑥

𝑧
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Results of  VAE as surrogates

13/02/2023 Lead Detection Using Autoencoders 11

Ideal scenario: Steady states

at all nodes are considered

x → 784

z → 20

Training data

Reconstructed data
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Results of VAE as surrogates

X
1

X2

T-SNE Dimensionality Reduction of z

Clear separation between

encoded means of z
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Results of VAE as surrogates

Leak in p653 Probable leak locations

Results of VAE as surrogates
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Combining LSTMs with AE 
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Input/Reconstructions for Sensor n1

Input/Reconstructions for Sensor n469 Input/Reconstructions for Sensor n215



Leak p232
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84 calendar days

distriubted

uniformly
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• Residuals reflects long term seasonal behavior

• One possible solution is to include seasonality models and add them with reconstructions

Reconstruction errors and Seasonality

13/02/2023 Lead Detection Using Autoencoders 16



Summary

• Two surrogate models were developed using AE and VAE architectures.

• The methods were tested on artifically simulated dataset from 33 leak events.

• AE performed better at detecting abrupt pipe bursts. 

• AE failed at detecting incipient leaks despite the assumption of high number of sensors for the given size of the
network.

• Attempts have been made to emulate pressure states at all locations usingVAE with gaussian prior and using LSTMs
for learning temporal correlations.

• Generative models such as VAE can enrich the information on reconstruction errors and their distributions.

13/02/2023 Lead Detection Using Autoencoders 17



Thank you

13/02/2023
Modelling and Analysis of Leak Detection and Localization 

Methods for Water Distribuition Networks
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Leak Localization with
the Dual Model

Erik Nordahl, Edo Abraham, Jochen Deuerlein, Olivier Piller, Franz Tscheikner-Gratl, David Steffelbauer





Leak status and 
consequences of leaks

• 32 % in Norway, 23 % in 
Europe

• Consequences

• Economy

• Environment 

• Increased energy use 

• Health 



How do we handle leaks today? 

• A passive approach

→ Only reported leaks are fixed

→ Leads to large volumes of lost water



How should we handle leaks?

• The active approach aims to limit the impact of leaks
• Network monitoring

• Network examining

• Or other tools which are: 
• Proactive

• Predictive



But…

The currently most 
commonly used methods
have some limitations:
• Ineffective
• Expensive
• Inconsistent

performance
• Labor-intensive



Model-based leak localization

• Tries to circumvent these shortcomings in finding leaks by: 
• Comparing estimates from hydraulic simulations

• With real data

• Advantageous because: 
• Cost-efficient

• Utilizes sensor technology

• Performs well regardless of pipe material



Model-based leak localization - challenges

• Currently used on: 

• Virtual networks

• Small uncomplicated real networks

• Very large leak scenarios 

• →Model-based leak localization is rarely seen outside of the academic
environment



Correlation 
Model 



Dual Model



Aim of the paper

• Test the Dual Model in a real-world case-study

• Compare it with the Correlation Method

• Test for different: 
• Leak types

• Leak locations

• Model calibrations

• Number of sensors



Case-study: Graz-Ragnitz, Austria

• Open hydrants to simulate leak scenarios 
• 17 leaks

• Single and multiple leaks simultaneously

• Measure
• Pressure – 12 sensors

• System inflow

• Leak size



Hydraulic model calibration

• Three different calibrations created

• C1: only calibrated for demand

• C2: calibrated for elevations + C1

• C3: roughness and minor loss + C2



Adjustments on measurements

• Tank level
• Approximated with second-order splines

• Pressure sensors
• Resampled to produce one value every minute

• Sensor clocks
• Corrected manually



Evaluation criterias

• Topological Distance [m]
• Distance from suggested leak location to real leak location

• False Positive Fraction [%]
• Fraction of pipes suggested before the correct pipe

• Maximum Span [m]
• Max distance between two FP-pipes





Dual Model results with best-calibrated
model

• Dual Model

• 21 out of 27 leaks:  FP < 2 % 

• Can localize small leaks

• Correlation Method

• 9 out of 27 leaks: FP < 2 %

• Unable to localize leaks smaller than 3 L/s 

• Dual Model outperforms!



Results with different calibrations

Large leaks All leaks Large leaks All leaks



Results with different number of sensors



Limitations of the Dual Model



Possibilities with the Dual Model

• Handle uncertain input

• Functions well with several leaks present 

• Robust 



Conclusion

• The Dual Model can localise real leaks with different locations and magnitudes

(1 L/s to 15 L/s)

• The Dual Model can localise leaks without a well-calibrated model, which is a 
significant advantage for water utilities.

• The Dual Model shows better performance with three pressure sensors than the 
more commonly used Correlation Method obtained with 11 pressure sensors

• The Dual Model’s main limitations are that the model is sensitive to the leak’s 
location in the water distribution network and that the nodal elevations must be 
adjusted



Thank you for your attention!

• Contact information: 

Email: erik.nordahl@multiconsult.no

mailto:erik.nordahl@multiconsult.no
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Hydraulic models

Hydraulic simulators are widely used 
But can computationally expensive for applications like

● Design and optimization
● Criticality assessment
● Real-time control
● Core model of a digital twin

Introduction

2



GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Surrogate models
Artificial Neural Networks (ANNs) are well established candidates for a surrogate model

Introduction

However, they need to be 
retrained for every change in the 
topology

Figure 1  - Schematic artificial neural network
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Graphs in WDS
Graph is a mathematical representation of a network
• G=(V,E)

Introduction

node edge Adjacency
matrix

Graph representation 
of WDS

Figure 2.A - example of a graph Figure 2.B - network layout of L-Town water 
system
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

GNNs as surrogate models

Introduction

Figure 3. A graph neural network (GNN) layer with a 2-hop neighbourhood. The 
figures from left to right indicate how the node signal in the black node 

propagates throughout the network. The same reasoning is applied for every 
other node in the graph. 

However, there is no evidence
of good transferability
properties
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Edge-level representation

Node-level
representation

Edge-level
representation

Method
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Step 2: 
Headloss reconstruction

Step 2: Pressure estimation

Method

Step 1: 
Flowrate interpolation 

Second step is based on Hazen-Williams equation and a matrix inversion
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Introduction Method Results ConclusionExperiments

Experiments

Compare accuracy of the model with the state of the 
art

i. On the same network topology (In-the-domain)
ii. On the unseen before network (Out-of-domain)

Experiments
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GRAPH NEURAL NETWORKS FOR WATER DISTRIBUTION SYSTEM MODELLING
10/02/2022 - Bulat Kerimov

Dataset generation

8 base water networks 
from the literature

Experiments

Introduced variability
~60 000 generated 

simulation

● Varying demands

● Variable pipe 
parameters

● Varying topology

ExperimentsIntroduction Method Results ConclusionExperimentsExperiments
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Results: In the domain performance

Dataset with varying demands, R2

Table 1: Comparison of performances of surrogate models pressures and flowrates

Water network

Model L-Town Net-3 Pescaria KL MOD Asnet2 ZJ
GNN 0.996 0.993 0.999 0.693 0.998 0.986 0.997
Ours 0.998 0.956 0.968 0.902 0.970 0.983 0.997
GNN 0.989 0.001 0.246 0.663 0.182 0.907 0.956
Ours 1.000 0.991 0.994 0.896 0.998 0.994 1.000

heads

flowrates

ExperimentsExperimentsIntroduction Method Results ConclusionExperiments
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Results: Out-of-domain performance

Model tested on 2 networks that were not present in the dataset

Water

Model Asnet2 ZJ

Ours 0.983 0.862
flowrates

Table 2: Evaluation of transferability on unseen networks

ExperimentsExperimentsIntroduction Method Results ConclusionExperiments

R2
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Conclusion

- We proposed a candidate for a surrogate model of WDS

- Such model accurately reproduces flowrates

- Edge-centric GNNs show higher potential for transferability
than a traditional GNN

ExperimentsExperimentsIntroduction Method Results ConclusionExperiments
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Purpose and Objectives

The problem

• Small municipalities not benefiting from machine learning (ML) trained models

Objectives

• Evaluate if a “Global” model which is trained with many municipalities’ pipe 

break data can be useful for the prediction of another municipality’s pipe 

breaks

• Similarly, evaluate the transferability of a “local” model
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Data
• Predictions based on historical

break data

Data:

• Water distribution network of 9 

municipalities of Norway

• Total length of pipes = 

~ 7000 km

Break records started around

1970s

Left-truncated data: breaks 

happened before 1970

The first break of pipe matters a lot!

In order to capture the first break records, all pipe 

installed before 1945 are discarded (19% of the data)

Still not know is the reason of the breaks!
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Method: Random Survival Forest (RSF) 
Survival modelingRandom Forest

Random Survival Forest (RSF): A combination of Random Forest and survival models

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The annals of applied statistics, 2(3), 

841-860
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Random Survival Forest - Performance evaluation

Observed Predicted

probability

of failure

1 (failed) 0,91

1 (failed) 0,72

1 (failed) 0,60

Observed Predicted

probability

of failure

0 (not failed) 0,75

0 (not failed) 0,62

0 (not failed) 0,60

Concordants (1 point) Discordants

(0 point)

Tied (0.5)

1 0,91 - 0,75 0,72 – 0,75 0,60 – 0,60

2 0,91 – 0,62 0,60 – 0,75 

3 0,91 – 0,60 0,60 – 0,62

4 0,72 – 0,62

5 0,72 – 0,60

C-index = (5+0,5)/9

= 0,61

C-index:

0,5 – random model

1,0 – perfect model

0,0 – perfectly wrong model

For high amount of censored data: C-

index overestimates performance, use 

instead C-index-ipcw

Concordance index (C-index) is the metric to evalute the performance of RSF

C-index-ipcw
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Results
Prediction performance of global models
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Results
Prediction performance of reference models
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Results

Group survival curves
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Analysis of feature
importance

Number of previous

breaks is the most 

important variable!
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Take home messages

• Proper record of breaks are important

• Pipe break models can be transferred between representative utilities

• Proper grouping reduces the uncertainties of group survival curves

• A previous pipe break is the most dominant indicator for the time to 
next break
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