

Control strategies and process optimization

26.09.2023

IWW Water Centre

Barbara Zimmermann, Andreas Nocker

b-watersmart.eu

Whey:

Residual liquid from cheese and curd production approx. 94% water, 4-5 % lactose, 0.6-1 % proteins, plus vitamins and minerals.

Vapour condensate:

arises from the evaporation of milk or whey

Treatment process

What are the relevant parameters?

Parameter	Unit	TrinkwV	Drinking water	Vapour condensate
pH-value	-	≥ 6,5 und ≤ 9,5	7,9	6,3
Conductivity	μS/cm	2790	324	15
Turbidity	NTU	1	0,3	1,8
Sodium	mg/l	200	13	< 0,5
Iron (total)	mg/l	0,2	0,008	< 0,02
Ammonium	mg/l	0,5	0,02	2,4
Chloride	mg/l	250	22	< 5
Nitrate	mg/l	50	< 2,5	< 5
COD	mg/I O ₂		0,4	26

Which parameters are relevant for monitoring and controlling the treatment process?

Sampling interval: online vs. offline

Biological treatment steps

- 1. Fixed bed reactor
- 2. Fluidized bed reactor
- 3. Multi-layer filter

Growth bodies

Nutrient removal through biological transformation

The challenge of the biological stages is to efficiently transform nutrients into biomass that is subsequently removed.

What promotes growth in vapour condensates?

What promotes growth in vapour condensates?

Growth bodies

The growth and metabolic activity of the bacteria varies between different growth bodies.

Example of microbiological water profile

dead (membrane-damaged)

- Detection based on fluorescent staining
- Every signal in gated area represents one bacterium
- Detection of either total
 or intact bacteria
- Time demand: 15 min

Bacterial regrowth potential

Day 0

Day 7

Changes of cell concentrations along the treatment train

TCC = total cell count IZZ = intact cell count

Changes in culturable bacteria

Changes of cell concentrations along the treatment train

IZZ = intact cell count

Changes of cell concentrations along the treatment train

IZZ = intact cell count

Changes of regrowth potential along treatment train: linear scale

Biomass vs. dissolved nutrients

Challenge: temporal fluctuations in vapour composition

Samples from different time points

Same type of vapour from the same sampling site, but sampling at different times: strong differences in cell concentrations and regrowth potentials

Questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 869171. The publication reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.