

WP3 - Re:actor tool - training

LL Alicante

O. Arumí, M. Sarrias, E. Santos CETAQUA

21/12/2022

Re:actor tool

Re:actor is a digital tool that aims to help the user take decisions about water treatment plants upgrades.

The tool gives the user economical and environmental impacts information by defining the water treatment plants and the different upgrades with <u>a few</u> inputs:

Defining the actual (base) scenario in order to have a baseline to compare the economic and environmental impact with the different solutions.

The baseline is defined by one or more water treatment plants:

- Wastewater Treatment Plants (WWTP)
- Drinking Water Treatment Plants (DWTP)
- Seawater Desalination Plants (SWDP)

Choosing the upgrades/modifications that wants to be implemented in the different water treatment plants.

The baseline is defined by one or multiple actions:

- Tertiary treatments (basic and advanced)
- Renewable energies
- Zero/minimum liquid discharge technologies

RE:actor BWS

Contempla EDAR, IDAM, ETAP

Focus: global Tecnologías: regeneración agua, energía, ZLD

Objetivo: valorar alguna mejora en una planta, comparación entre diseños

Tren tratamiento es INPUT

Enfocado a benchmarking e inversión

No contempla legislación

Resultado: informe con resultados finales línea base (LB) vs LB+upgrade (impacto ambiental + impacto económico)

Más atractiva

Menos detalle

Create the project	Define the baseline	Apply upgrades	Analyze results

SET DE ACTUACIONES

1. ENERGÍA	
1.1 ENERGÍA SOLAR	•
1.2 INSTALACIÓN DE TURBINAS	•
1.3 CO-DIGESTIÓN	•
2. TRATAMIENTOS TERCIARIOS	
2.1. TRATAMIENTO FÍSICO-QUÍMICO	•
2.2. FILTRACIÓN CON FILTROS DE ARENA	•
2.3. MEMBRANAS DE AUTOFILTRACIÓN	•
2.4. DESINFECCIÓN CON UV	•
2.5. DESINFECCIÓN CON CLORO	•
2.6. NANO FILTRACIÓN	•
2.7. OSMOSIS INVERSA	•
2.8. EDR	•

3. MINIMIZACIÓN DEL VERTIDO (MLD/ZLD)	A
3.1. NANO FILTRACIÓN	,
3.2. OSMOSIS INVERSA	
3.3. EDR	
3.4. EVAPORACIÓN	
	8

Re:actor tool

The main idea of this tool is to keep all the definitions of the water treatment plants and the different actions as simple as possible, reducing the number of inputs, although the accuracy of the outputs is reduced.

The usability of the tool is also very simple, the user must follow 4 steps:

Step 1: Create a new project and accept or modify the economical parameters

Step 2: Define one or more Water Treatment Plants (Activos)

Step 3: Create a result scenario, choosing one or more upgrades (actuaciones) or modifications to the defined plants

Step 4: Analyze the economic and environmental results

Re:actor tool EXAMPLE simulation

Step 1: Create the project

	F.E	F.C	Eutrofización marina	Eutrofización freshwater	Fuente	€/ud.	Fuente
						\frown	
Mix electricided penincular (GdQ) (kWb)	0.052	0.009	0.0000287	0.0000269	Eccinyant 3.8		~~~~
Mix electricidad pennisular (GGO) (KWI)	0.052	0.005	0.00000207	0.0000205		-	
Mix electricidad insular (sin GdO)	1	1	1	1	Econvent 3.8	1	-
Mix electricidad insular (con GdO)	1	1	1	1	Ecoinvent 3.8	1	XXX
Gasoil (T)	476.38	0.568	0.00402	0.48	Ecoinvent 3.8	1	xxx
Gasolina (T)	609.477	0.707	0.00483	0.488	Ecoinvent 3.8	1	xxx
Gas Natural (Nm3)	0.474	0.001	0.00000228	0.0000343	Ecoinvent 3.8	1	xxx
Mix electricidad peninsular (kWh)	0.213	0.005	0.00000584	0.000036	Ecoinvent 3.8	1	. oxx
Químicos							
FeCI3	0.538	0.02	0.0000446	0.000543	Ecoinvent 3.8	1	oxx
PAX	1.704	0.019	0.0000514	0.00118	Ecoinvent 3.8	1	xx
NaOCI	0.065	2.123	0.000131	0.00139	Ecoinvent 3.8	1	xx
GAC (nuevo)	7.765	0.021	0.000302	0.00531	Ecoinvent 3.8	1	xxx
GAC (regenerado)	0.581	2.385	0.0000275	0.000389	Ecoinvent 3.8	1	xxx
Acido Citrico	2.769	0.143	0.00157	0.00133	Ecoinvent 3.8	1	xxx
HCI	0.033	0.881	0.0000721	0.000819	Ecoinvent 3.8	1	xxx
NaOH	7.983	1.105	0.0000918	0.00108	Ecoinvent 3.8	1	XXX
H2SO4	0.079	0.021	0.00000362	0.0000611	Ecoinvent 3.8	1	xxx
Antiincrustante	2.455	6.67	0.000123	0.00243	Cálculo propio a partir de Ecoinvent 3.8	\setminus /	xxx

Step 2: Define the baseline

Define the water treatment plant choosing the treatments and some of the general parameters

F	ReActor ×	Valores globales de Conversión ♥ EB_Test0000 ∨		Finalizar creación de EB
P P	arámetros	Pego	AÑADA UN ACTIVO	
P	royectos			
e li	vitar a un colaborador	Serre Marina Natural Park	1. TIPOS DE ACTIVO	
s	alir	Caudete Alcol / Alcoy Cállosa	EDAR	ETAP
) Ir	formación	Yecla Uitlena Onit Ibi dien Sarna Castalta Uitlena Diene Castalta Uitlene die Castalta		
		Sax Xirona/Jijona Benidorm Ia Vila Joroso /Mila proce	2. CARACTERÍSTICAS BÁSICA	S
		Elda	Nombre de la instalación	Caudal de Diseño
		Mubramel	Test01	10000
		Novelda	Población servida	Sociedad
		Alicante	25000	Alicante
		Crevilient Elche	3. TREN DE TRATAMIENTO	
		Abanita rtuna Albatera Santa Bola	Tratamiento Primario 🏹	Eliminación N 👩
		Callosa de Dolores Segura	Tratamiento Secundario 🇹	Eliminación P
		Santomera	Tratamiento Terciario 🗌	
		urcia Leaflet I Map data © OpenStreetMan contributors Imanery © Manbox		

Define the main parameters of the plant

1. CARACTERÍSTICAS ACTIV	10
1.1 EFICIENCIA PROCESO DEP	URACIÓN
Caudal entrada *	
10000	
Caudal Depurada Vertida *	Punto Vertido *
9000	Río 🔿 Mar 🔘
C 11 11 11 +	
Calidad Vertido * DQO * 123	SS * 23
Calidad Vertido * DQO * 123 NT *	55 * 23 PT *
Calidad Vertido * DQO * 123 NT *	SS * 23 PT * 5
Calidad Vertido * DQO * 123 NT * 5 1.2 CONSUMO DE ENERGÍA	SS * 23 PT * 5
Calidad Vertido * DQO * 123 NT * 5 1.2 CONSUMO DE ENERGÍA Electricidad consumida de red *	55 * 23 PT * 5 Consumo Gas Natural
Calidad Vertido * DQO * 123 NT * 5 1.2 CONSUMO DE ENERGÍA Electricidad consumida de red * 2314	55 * 23 PT * 5 Consumo Gas Natural 2

Step 3: Apply upgrades

/aterSmart

Create a new "Results scenario" and modify the definition of the water treatment plant or add another upgrade options

Valores globales de Conversión 🛛 🛛			Añadir Activo		
Sueca Atžira		SET DE ACTUACIONES			
Xătiva Gandia		1. ENERGÍA			
EDAR Test01 Benissa		2. TRATAMIENTOS TERCIARI	IOS 🔻		
Yecta Villena X @ 4 Cato Attes		3. MINIMIZACIÓN DEL VERT	TIDO (MLD/ZLD)		
Jumitta Elda Novelda Alicante				8	
Abarán Fortuna					
Archena Mula Segura , Murcia Rojales					
Riar de la Horadada San Javida					
Fuente Alamo de Murcia					
Canada de Galleĝo	© Mapbox				

Choose and define the different upgrade options

1. ENERGÍA	
1 ENERGÍA SOLAR	
2 INSTALACIÓN DE TURBINAS	
3 CO-DIGESTIÓN	
2. TRATAMIENTOS TERCIARIOS	
1. TRATAMIENTO FÍSICO-QUÍMICO	
2. FILTRACIÓN CON FILTROS DE ARENA	
3. MEMBRANAS DE AUTOFILTRACIÓN	
.4. DESINFECCIÓN CON UV	
5. DESINFECCIÓN CON CLORO	
.6. NANO FILTRACIÓN	
7. OSMOSIS INVERSA	
.8. EDR	
3. MINIMIZACIÓN DEL VERTIDO (MLD/ZLD)	4
3.1. NANO FILTRACIÓN	
3.2. OSMOSIS INVERSA	
3.3. EDR	
3.4. EVAPORACIÓN	

Step 3: Apply upgrades

1. ENERGÍA	
1.1 ENERGÍA SOLAR	
1.2 INSTALACIÓN DE TURBINAS	
1.3 CO-DIGESTIÓN	
2. TRATAMIENTOS TERCIARIOS	
2.1. TRATAMIENTO FÍSICO-QUÍMICO	
2.2. FILTRACIÓN CON FILTROS DE ARENA	
2.3. MEMBRANAS DE AUTOFILTRACIÓN	
2.4. DESINFECCIÓN CON UV	
2.5. DESINFECCIÓN CON CLORO	
2.6. NANO FILTRACIÓN	
2.7. OSMOSIS INVERSA	
2.8. EDR	
3. MINIMIZACIÓN DEL VERTIDO (MLD/ZLD)	
3.1. NANO FILTRACIÓN	
3.2. OSMOSIS INVERSA	
3.3 EDR	

🔾 Potencia a instalar	○ % Autoconsume
KWp	%
○ Sup. ocupable con paneles otovoltáicos	
m2	
1.2 INSTALACIÓN DE TURBINAS	
1.2 INSTALACIÓN DE TURBINAS 1.3 CO-DIGESTIÓN	
1.2 INSTALACIÓN DE TURBINAS 1.3 CO-DIGESTIÓN Cantidad de residuo *	MS *
1.2 INSTALACIÓN DE TURBINAS 1.3 CO-DIGESTIÓN Cantidad de residuo * T MF/año	MS ★ kg ST/T residuo
1.2 INSTALACIÓN DE TURBINAS 1.3 CO-DIGESTIÓN	
1.2 INSTALACIÓN DE TURBINAS 1.3 CO-DIGESTIÓN Cantidad de residuo * T MF/año Biodegradabilidad *	MS * kg ST/T residuo

2. TRATAMIENTOS TERCIARIOS	-
2.1. TRATAMIENTO FÍSICO-QUÍMICO	
2.2. FILTRACIÓN CON FILTROS DE ARENA	•
2.3. MEMBRANAS DE AUTOFILTRACIÓN	•
2.4. DESINFECCIÓN CON UV	•
2.5. DESINFECCIÓN CON CLORO	•
2.6. NANO FILTRACIÓN	
2.7. OSMOSIS INVERSA	•
2.8. EDR	•

	2.8. EDR		
	Capacidad de dis	eño *	Caudal medio a tratar '
	m3/día		m3/día
	Recovery *		
	%		
2.4. DESINFE	CCIÓN CON UV		*
2.4. DESINFE	CCIÓN CON UV	Caudal medio	🔺 o a tratar *

mW/s-cm2

B-WaterSmart

3.4. EVAPORACIÓN

Step 3: Apply upgrades

	Valores globales de Conversión 0	EB_Test0000		Añadir Activo		Duplicar ER
+ -Sueca Azera			SET DE ACTUACIONES			
Xàtiva Gan Almansa			1. ENERGÍA			
EDAR Test01	Pego Dénia Benissa		2. TRATAMIENTOS TERCIAR	RIOS	•	
Yecla Villena Xxxxinay-eyijona & Bo			3. MINIMIZACIÓN DEL VER	TIDO (MLD/ZLD)	•	
Jumilia Elda Novelda Alicante						8
Abarán Fortuna						
Archena Molina de Segura Murcia						
Pilar de[la Horadada San Javiên						
Fuente Alamo de Murcia Cartagena						
💳 Leaflet Ma	ap data © OpenStreetMap contributors, Imag	gery © Mapbox				

Step 4: Analyze the results

Visualize the results comparation between the baseline and the results scenario

₿	ReActor ×		Valores globales de Conversión $oldsymbol{\Theta}_{EB}$		Añadir Activo	Duplicar ER					
10 °	Parámetros										
	Proyectos	INFORME DE RESULTADOS ① Estos resultados están sujetos a los Valores Globales de Conversión definidos para este Proyecto.									
* *	Invitar a un colaborador	Derfereter		Technolo	Management	8/					
0Þ	Salir	Huella de Carbono	-61,646.22 kgC02		12,744.46 kgC02	-583.71 %	•				
0	Información	Huella Hídrica	8,358.05 L	\checkmark	10,104.31 L	-17.282 %	•				
0		Eutrofización Marina	9,998.05 к _g N	↓	10,000.09kgN	-0.02 %	•				
		Eutrofización Agua Dulce	9,987.92 к _g N	↓	10,000.49 kgN	-0.126 %	•				
		Superficie Ocupada	25,141.11 m ²	1	23,160.91 ¢	8.55 %	•				
		Coste Operacional	-326,871.76 €	↓	22,380.24 €	-1,560.537 %	•				
		Coste Inversión	258,926.2 €	↑	249,266.2€	3.875%	•				
						6					
						C.					

Option to print the results, showing more details for every upgrade/modification

Next steps

- Update the result tables with more accurate environmental and economical parameters
- Users administration and server management
- Last sprint review meeting for adjusting some details next week

A	В								J
TRATAMIENTO	INPUT1	INPUT1	INPUT2	INPUT2	INPUT3	INPUT3	INPUT4	INPUTS	PARAM1
Energia_codigestion	Cap_min_T_MF_ano	Cap_max_T_MF_ano	MS_min_kgST/Tresiduo	MS_max_kgST/Tresiduo	Biodegradabilidad_min_porciento	Biodegradabilidad_max_porciento			Tasa_gestion_residuo_EUR
Energia_codigestion	0	2000	0	50	0	25			30,00
Energia_codigestion	0	2000	0	50	25,1	50			30,00
Energia_codigestion	0	2000	0	50	50,1	75			30,00
Energia_codigestion	0	2000	0	50	75,1	100			30,00
Energia_codigestion	0	2000	50,1	100	0	25			30,00
Energia_codigestion	0	2000	50,1	100	25,1	50			30,00
Energia_codigestion	0	2000	50,1	100	50,1	75			30,00
Energia_codigestion	0	2000	50,1	100	75,1	100			30,00
Energia_codigestion	0	2000	100,1	150	0	25			30,00
Energia_codigestion	0	2000	100,1	150	25,1	50			30,00
Energia_codigestion	0	2000	100,1	150	50,1	75			30,00
Energia_codigestion	0	2000	100,1	150	75,1	100			30,00
Energia_codigestion	0	2000	150,1	200	0	25			30,00
Energia_codigestion	0	2000	150,1	200	25,1	50			30,00
Energia_codigestion	0	2000	150,1	200	50,1	75			30,00
Energia_codigestion	0	2000	150,1	200	75,1	100			30,00
Energia_codigestion	0	2000	200,1	250	0	25			30,00
Energia_codigestion	0	2000	200,1	250	25,1	50			30,00
Energia_codigestion	0	2000	200,1	250	50,1	75			30,00
2 Energia_codigestion	0	2000	200,1	250	75,1	100			30,00
Energia_codigestion	2001	10000	0	50	0	25			30,00
Energia_codigestion	2001	10000	0	50	25,1	50			30,00
Energia_codigestion	2001	10000	0	50	50,1	75			30,00
Energia_codigestion	2001	10000	0	50	75,1	100			30,00
Energia_codigestion	2001	10000	50,1	100	0	25			30,00
Energia_codigestion	2001	10000	50,1	100	25,1	50			30,00
Energia_codigestion	2001	10000	50,1	100	50,1	75			30,00
Energia_codigestion	2001	10000	50,1	100	75,1	100			30,00
Energia_codigestion	2001	10000	100,1	150	0	25			30,00
Energia_codigestion	2001	10000	100,1	150	25,1	50			30,00
Energia_codigestion	2001	10000	100,1	150	50,1	75			30,00
Energia_codigestion	2001	10000	100,1	150	75,1	100			30,00
Energia_codigestion	2001	10000	150,1	200	0	25			30,00
Energia_codigestion	2001	10000	150,1	200	25,1	50			30,00
Energia_codigestion	2001	10000	150,1	200	50,1	75			30,00
Energia_codigestion	2001	10000	150,1	200	75,1	100			30,00
Energia_codigestion	2001	10000	200,1	250	0	25			30,00
Energia_codigestion	2001	10000	200,1	250	25,1	50			30,00
Energia_codigestion	2001	10000	200,1	250	50,1	75			30,00
Energia_codigestion	2001	10000	200,1	250	75,1	100			30,00
Energia_codigestion	10001	50000	0	50	0	25			30,00
Energia_codigestion	10001	50000	0	50	25,1	50			30,00
1 Besultados activos	sultados actuaciones	tuaciones inputs				: 11			20.00
	Actiones								11

